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A new era of accelerated
discovery

1st Paradigm

Empirical
Science

Observations
Experimentation

Pre-Renaissance

2nd Paradigm

Theoretical
Science

Scientific laws
Physics
Biology
Chemistry

~1600s
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3rd Paradigm

Computational
Science

Simulations
Molecular dynamics
Mechanistic models

~1950

4th Paradigm

Big data-driven
Science

Big data
Machine learning
Patterns
Anomalies
Visualization

~2000

5th Paradigm

Accelerated
discovery

Scientific knowledge at scale
Al generated hypotheses
Autonomous testing

~2020

Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high

performance computing and robotics. npj Comput Mater 8, 84 (2022)



The scientific method is
humanity’s best model for
discovery

Generative models automatically
propose new hypotheses and explore a
Hypothesize wider discovery space

Extraction, integration and reasoning
with knowledge at scale

Question

Robotic labs automate experimentation
and bridge digital models and physical
testing

Tools help identify new questions based
on needs and gaps in knowledge

Quantum

Assess

Al surrogate models are integrated with
simulation and experimentation to speed
up complex workloads

Machine representation of knowledge
leads to new questions

Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation performance Computing and robotics. n,Oj CO/’TZ,OUZL Mater 8, 34 (2022)



Scientific discovery IS
accelerated by Al tools

Simulation Toolkit for Generative Toolkit for

Scientific Discovery Scientific Discovery
https://st4sd.github.io/overview/ Hypothesize https://github.com/GT4SD/gt4sd-core

Question o )

B ¥
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Quantum

Knowledge Integration AAssess IBM RXN for Chemistry

https://rxn.res.ibm.com

https://dsdsd.github.io

Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high
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https://ds4sd.github.io/

The field of Al for scientific

discovery

O P SO0

Al for science
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Observations

AK Experiments <

Weather forecasting

Battery design
optimization

Magnetic control of
nuclear fusion reactors

Planning chemical
synthesis pathway

Neural solvers of
differential equations

Hydropower station
location planning

Synthetic electronic
health record generation
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Rare event selection
in particle collisions

Language modelling for
biomedical sequences

High-throughput
virtual screening

Navigation in the
hypothesis space

Super-resolution 3D
live-cell imaging

Symbolic regression

Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47-60 (2023)

Al-aided data collection and curation for scientific research
Learning meaningtul representations of scientific data
Al-based generation of scientific hypotheses

Al-driven experimentation and simulation



State of the art

SCIENCE VOL 324 3 APRIL 2009 Nature | Vol583 | 9 July 2020 | 237
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ENABLING SELF-DRIVING LABORATORIES

) eeeeeeee /Help  Tutorial > 0 o

The Automation of Science Article
Ross D. King,™* Jem Rowland,* Stephen G. Oliver,” Michael Young,> Wayne Aubrey,* A mObile rObOtic ChemiSt

Emma Byrne,* Maria Liakata,® Magdalena Markham,* Pinar Pir,? Larisa N. Soldatova,*
Andrew Sparkes,® Kenneth E. Whelan,* Amanda Clare®

ENABLE YOUR SELF-DRIVING LABS TO REIMAGINE DISCOVERY AND ACCELERATE INNOVATION

The basis of science is the hypothetico-deductive method and the recording of experiments in https://doi.org/10.1038/s41586-020-2442-2  Benjamin Burger', Phillip M. Maffettone', Vladimir V. GuseV', Catherine M. Aitchison’,
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,” Received: 1 November 2019 Yang Bai', Xiaoyan Wang', Xiaobo Li", Ben M. Alston', Buyi Li", Rob Clowes', Nicola Rankin’,

which advances the automation of both. Adam has autonomously generated functional genomics Brandon Harris', Reiner Sebastian Sprick’ & Andrew I. Cooper'™
i f Accepted: 25 March 2020
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses

Welcome to Atinary™ SDLabs Enterprise, the platform that allows you to orchestrate self-driving labs to accelerate technology
innovation, materials discovery, process optimization and scientific development.

Published online: 8 July 2020

+8_ - CREATED TEMPLATES gl.=. RUNNING CAMPAIGNS 1l- PAUSED CAMPAIGNS
! >

=3 “1 w0

Technologies such as batteries, biomaterials and heterogeneous catalysts have

® Check for updates functions that are defined by mixtures of molecular and mesoscale components.
Asyet, this multi-length-scale complexity cannotbe fully captured by atomistic
simulations, and the design of such materials from first principles is still rare'.
Likewise, experimental complexity scales exponentially with the number of variables,

— restricting most searches to narrow areas of materials space. Robots can assistin

oA experimental searches®™ but their widespread adoption in materials research is Wi 1
challenging because of the diversity of sample types, operations, instruments and
measurements required. Here we use a mobile robot to search forimproved

CAMPAIGNS IN PROGRESS
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https://youtu.be/SX26XRFxOUO
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scale : 1m

King, R. D. et al. The Automation of Science.
Science 324, 85-89 (2009)

Burger, B. et al. A mobile robotic chemist. Nature 583, 237—
2471 (2020)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation 9


https://youtu.be/SX26XRFx0U0

Making Al for chemistry
available to everyone

rxn.res.ibm.com

IBM RXN for Chemistry Twitter @forRXN Publications Get Started! -

RXN for (gmiSty

Use Al to predict outcomes of chemical reactions for
optimized synthesis methods, and to automatically
generate chemical procedures for use in manual or
automated lab operations.

Start your Project Now

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation


https://rxn.res.ibm.com/

Synthesizing new molecule
:

L

Started: Nov 30 2020, 6:49am PT
Live from IBM RoboRXN

Achon 2

Adding C,H,F,0.S

Ovenview

In this action, the molecule methyl trifluoromethane
sulfonate is added to Reactor 2.

Methyl trifluoromethane & 30
C.H.F,0.S

F.
O N\ _-F
\ _C
&~ X
N0\ F
0
Methyl trifluoromethane sulfonate is a brown liquid.

Insoluble in water. This material is a very reactive
methylating agent, also known as methyl triflate.

® NOW

10 ml of reagent containing methyl trifluoromethane
sulfonate is being moved from Vial 61 and added
to Reactor 2.

Position of the robot arm
Moving to Vial 61

uuuuuuu




Molecular
generation

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

= Language models for molecular discovery
= Generative Al
= Graph neural networks

12



The world ot large language
models (LLMs)

Credit: https://blog.sylphai.com/introduction-
to-large-language-models
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The same Al breakthroughs tor
language are changing

sclentific discovery

Natural Language Processing (NLP)

Data

EM

odod-
YT

Language

I

Sentences

I

Words

I

Letters

Question Answering

ALBERT (ensemble model)
BERT + N-Gram Masking + SvntheticIS‘eIf—"I"raining (ensemble)
BERT finetune baseline (ensemble)
BERT (single'model)

ninet (single model)

FusionNet++ (ensem ble)
! S—

2018 2019 2020
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Transformers

v

Al Models

Improved
Language
Tasks

Data

Generative modeling and transformers are achieving new breakthroughs in scientific disciplines

Accelerated Chemistry

Chemistry

I

Transformers

Properties/Reactions ¥

I

Molecules

Al Models

Improved
Chemistry
Tasks

14



Translate from German to
English
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Representing words as input to
a neural network

W{j 2T, 7

Chald
j"l ],ﬂ"
One-hot encoding? lo'l]o ol \#Okﬁ_w
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Word2Vec: Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed

Representations of Words and Phrases and their Compositionality. arXiv:1310.4546 (2013)
Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation



Words as vectors

Similar words cluster Word arithmetics
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Until 2017, language models were based on
recurrent neural networks (RNNSs)

G~ (i) ~ (0 ~ (e ~ (e -
I

I
SO~ (i) - (e~ ()~ () - (N
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The transformer model

Decoder | ~

Encoder
I_,—>[ Add & Norm |

N x

P08|t|ona|
Enoodlng

Vaswani, A. et al. Attention is All you Need. NeurIPS (2017)

Add & Norm

Multi-Head
Attenhon

Input
Embeddlng

T

Inputs
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Feed |I
Forward |
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Output
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Feed
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Output
Embedding
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|
|
|
INx
|
|
|

Positional
Encoding

Key concept: parallel multi-head attention mechanism
= Tokenizers convert input (such as text) to tokens
»  Embedding layer converts tokens and their positions to vector representations

= Transtormer layers consisting of alternating attention and teedtorward layers
extract linguistic information

Superior translation quality and less training eftort compared to previous state-of-
the-art with recurrent neural networks (RNNs).

Encoder-only models:

Best suited for classification tasks
(e.g. sentence and word classification, entity recognition, extractive Q&A)

Decoder-only models (also called auto-regressive models)

Best suited for generative tasks
(e.g. text generation)

Encoder-decoder models (also called sequence-to-sequence models)

Best suited tor generative tasks depending on a given input
(e.g. summarization, translation, generative Q&A)

19



Since 2017, transformers networks are the
state-of-the-art for language models
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Masked language modelling: training
transtformers with selt-supervision
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Transtormers impacted multiple application
domains

Attention Is All You Need

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Ashish Vaswani”
Google Brain
avaswani@google.co

Alexey Dosovitskiy* T, Luca;
Xiaohua Zhai*, Thomas
Georg Heigold, S

*

RETURNTO ISU < REV RESEARC RICLE NEXT >
Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction
Prediction

{adosovit Philippe Schwaller*, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A. Hunter, Costas Bekas, and Alpha A. Lee*

@ Cite this: ACS Cent. Sci.
Publication Date: August 30,
https://doi.org/10.1021/acs¢
Copyright © 2019 American
RIGHTS & PERMISSIONS E

PDF (1 MB) . . .
Decision Transformer: Reinforcement

Learning via Sequence Modeling

Lili Chen**, Kevin Lu*-*, Aravind RHjEEH'H.['HIlE, Kimin Lee’,
Aditya Grover®, Michael Laskin', Pieter Abbeel’, Aravind Srinivas'-*, Igor Mordatch'-"

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation






Learning the language ot chemistry

Products
o
l CH3 OH
4N+ st HaC CH
0 ¥ retrosynthesis ° N °
/U\ \ ) o . H3C CH3
o 0 synthesis
CH3
CH3
Textual representation (SMILES)
CC1(CCCC(N1OC(OC1=CC=C(IN+](=0O)[O0-]Cc=C1)=0)(C)C)C CC1(CCCC(N10O)(C)C)C
“Sentence of atoms”
cci1(ccCcCC(N1OCC((OCIX cc1(cccc (N1
=CC=¢C ( [N+] (=0) [0-] ) C C1=CC-=°¢C
-—C1)=0)(Cc)cCc)C
Translation
English p > Spanish

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

Reactants + Reagents

0
o)‘l\m

O(C(=0)Cl)C1=CC=C(IN+](=0)[O-])C=C1

24



Automating lab synthesis and experimentation
with help of language models

1. AI-based chemical reaction prediction Automated synthesis via cloud + robotic lab

Cl O

synthesis https://rxn.res.ibm.com/rxn/robo-rxn

A\ 4

iew module

Cl Cl
NH, + o , H ]
Br re‘t rosyn t h eS i S Br Synthesizir;g new molecule | : L S . Y uﬂve

|
Vi

|

\

|

e

5t , ) .
/’%\ P 7 A - : a g \ ¥
H T F-': . IF . . it - = d 9 . o
® - 3 e ' <
[ & 1% 4 L . 0 g S v o
o | 2 ® iy o o o
, 6:49am | | 3

“translation”

NCclcccc(Cl)cl.0=C(Cl)clccc(CBr)ccl ¢ > 0=C(NCclcccc(Cl)cl)clccc(CBr)ccl
_ transformer Adding C,H,F,0.5
L Schwaller et al., Chem. Sci. 9 (2018) 6091

Schwaller et al., ACS Cent. Sci. 5 (2019) 1572 e e
Schwaller et al., Chem. Sci. 11 (2020) 3316 - -

2. Chemical procedures from text (Paragraph2Actions)

The TFA was removed in vacuo and a translation Concentrate(),

N

saturated solution of NaHCO3 was added. 7 Add (name=‘saturated solution of NaHCO03')

Vaucher et al., Nat. Comm. 11 (2020) 3601

3. Chemical procedures from reactions (Smiles2Actions)

g e 30k+ 10+ million
O\N’ﬁcgﬂ\O“LmjlmomoﬂL?;}l N Hmo »

ADD $2%
= (0]

ADD $3$ global users reaction
ILTER Koo brocinitate via cloud predictions
RECRYSTALLIZE from ethanol

YIELD $-1%

C(=NC1CCCcCC1)=NCc1cceecca.c1ccl.cca(c)cec(=0)Ne2cc(C(=0)0)ccec21.Nelececeel>>

ONoakwhE

Vaucher et al., Nat. Comm. 12 (2022) 2573

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation 25



The size of chemical space

Number of compounds Reference

6,2 x 1013 Henze and Blair [4

1,3 x 1015 Blair and Henze [5]
1021 Weaver and Weaver [8]
10243 Ertl [7]
1026 Ogata et al. [24]
1033 Weininger [23]
1033 This work (see ref. below)
1060 Bohacek et al. [6]
10100 Walters et al. [26]
10180 Weininger [27]

Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-
like chemical space based on GDB-17 data. J Comput Aided Mol Des 27, 675-679
(2013)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

Chemical Space | Naomi Johnson, Lee Cronin


https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR4
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR5
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR8
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR7
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR24
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR23
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR6
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR26
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR27

Generative Al for discovery How can generative models fuel scientific discovery?

https://youtu.be/xsx14v1CRu8?si=|Wg2BIu-mADyr3rM
John Smith, IBM Fellow (2022)

i & DISLRMVATIVE  QEMELATIVE
qi )
ﬂ . 0 O
y 0 & e 0
v, o o
0%, 8
,m?%:.é?'f‘:- Y ‘J w \*" =


https://youtu.be/xsx14v1CRu8?si=jWg2BIu-mADyr3rM

Principle of generative models

unit gaussia

O

Z

Example approaches to

= Variational autoencoders (VAES)

/

generative

model
(neural net)

generated distribution true data distribution

T~

= (Generative adversarial networks (GANS)

= Generative flow networks (GFNs)

= Diffusion models (DMs)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

N\

P(X)

Image space Image space

Credit: https://openai.com/research/generative-models
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Examples of generative models

Variational autoencoders

Real Reconstructed
molecule

Latent space

- £ -l

Encoder Decoder
Credit: Bilodeau et al. (2022)

molecule

= (Consist of an encoder and a decoder
» |earnthe best encoding-decoding scheme through iterative optimization

= Loss function with two terms: reconstruction loss and regularization term
Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv.1312.6114v11 (2022)

Generative adversarial networks

Generated
Gaussian molecule
noise Generated
» data
™ Real
Fake
Training
data

Discriminator
Credit: Bilodeau et al. (2022)

Generator

= (Consist of a generator and a discriminator
» Adversarial training of generator to trick discriminator

= Tends to produce high fidelity, risk of collapsing to low diversity
Goodfellow, I. et al. Generative Adversarial Nets. NeurIPS (2014)

Generative flow networks

Credit:
https://yoshuabengio.org/2022/03/05/
generative-flow-networks/

= Allow neural nets to model distributions over data structures like graphs
= (Generates a series of actions at a frequency proportional to their reward

= Improves samples diversity and provides non-iterative sampling mechanism
Bengio, E., Jain, M., Korablyov, M., Precup, D. & Bengio, Y. Flow Network based Generative Models for
Non-Iterative Diverse Candidate Generation. NeurIPS (2021)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

Diffusion models

p@(Xt—1|Xt)
O @ @z —~©
K\\ g
e e

Q(Xt |Xt—1

Credit: Ho et al. (2022)

= Learn high-dimensional distributions by denoising data at multiple scales
= Fixed forward diffusion process and learnable reverse diffusion process

= High fidelity and diversity samples, but slow sample generation
Bengio, E., Jain, M., Korablyov, M., Precup, D. & Bengio, Y. Flow Network based Generative Models for
Non-Iterative Diverse Candidate Generation. NeurIPS (2021)
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Generative models in molecular discovery

Design-Make-Test-Analyze cycle in chemistry Accelerated molecular discovery

Study —»— Hypothesize

Design

Generative
models

Simulate

Automated

Virtual
screening

synthesis Make

Analyze .
platform Question Make

Automated
laboratories

Test

Analyze Test

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation



Generative Toolkit for Scientific Discovery
(GT4SD): an open-source library to accelerate
hypothesis generation in scientific discovery

G T GT4SD makes generative Al algorithms and Study
4 models easier to use in scientific discovery
D https://github.com/GT4SD/gt4sd-core Applications include hypothesis generation tor
Inverse design and discovery of materials and

therapeutics like antivirals and antimicrobials

1. Train generative models Example molecules generated using GT4SD

x%*’xL 1?}9 VVU?L‘ X J\w.» grrnggr’

2 . C re ate I nfe re n Ce pl pe |'I n eS G){G]DGBN [N.. G =C(Nc1 ccmm}Nc GC1(C{—G}NG O) C[N+]1 —GSG{ N}B G—CH GGG HC(=...

)C.
gt4sd-saving —-training_pipeline_name paccmann-vae-trainer —-model_path /t 2 t zO’L
W

chc[c (F)(F).. cc:[c}(c)oc (=O)N... c:#cccoc:{ 0)CA(.. GG{G][C}D c:mcc[c}cmzccm

o e e

CC1(C(=0)0Cc2c¢c... CC1(C(=0)OCCN2... CC1(C(=0)OCC2=... C=C10CC(C)(COC... CCC(c1cceeet)(cle...

gt4sd-trainer --training_pipeline_name paccmann-vae-trainer —--epochs 250 B t

3. Run inference pipelines

gt4sd-inference —--algorithm_name PaccMannGP —-algorithm_application PaccMa 6 »

Manica et al., npj Comput. Mater. 9, 69 (2023)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation 31


https://github.com/GT4SD/gt4sd-core

Multi-modal foundation models will accelerate
fundamental research tasks

An example from chemistry...

4 A 4 D
The reaction mixture was stirred at the same
temperature ... The previous procedure describes STIR for 30 minutes.
| the following actions: J\ Multi-task & Multi-domain Language Model r )
\
/ Input \
The molecule is a siderophore composed from ... Domain _ _ _ _ _ _ _ _
Given the above descrplon gonertethe descid Mutidomain  Mutidomai CIC0(=OINIONC(=0)CB(COONOOC(=0IOM
molecule in SMILES. { Encoder Decoder B B B
Text
T5 E T5 Decod
C(CC(=0)NCCNC(=0))CC(CC(=0)NCC(C(=0)O)N) ncoder | ‘ ecoder ] The molecule is a siderophore composed from ...
(C(=0)0)0O)C(=0)C(=0)0. Generate a caption for the , Given the above description generate the described
given molecule. Chemistry molecule in SMILES.
Tasks K}
COc1cccc2¢1C(=0)C2.CO.[BH4A-].[Na+]>> j COc1ceec2c1C(0)C2

{t ext 2text] text2mol mol2text mol2mol

Christofidellis et al., ICML (2023)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation
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End-to-end discovery workflow De NOVO d@Slgﬂ

using multi-task text and
chemistry T5 model

Input

Write in SMILES the described molecule: Give me a
member of the class of phenylureas that is urea in
which one of the nitrogens is substituted by a p-
chlorophenyl group while the other is substituted by
two methyl groups. It has a role as a herbicide, a
xenobiotic and an environmental contaminant. It
should be a member of monochlorobenzenes and a
member of phenylureas.

-Retrosynthesis

Input

Predict the reaction that produces the following
product:

CN(C)C(=0)NC1=CC=C(C=C1)Cl

fean

-Actions

Input

Which actions are described in the following
paragraph:

4-Chloro-aniline (1.0 g) was dissolved in pyridine and cooled to
0°C before adding dimethyl carbamyl chloride (0.683 g, 6.35
mmol). The reaction mixture was stirred at room temperature for
2 h and then heated overnight at 60°C under argon. The solution
was cooled to room temperature, poured into ice water and
extracted with EtOAc. The organic extract was dried over MgS04,

filtered and concentrated to a residue to afford 3-(4-
Chlorophenyl)-1,1-dimethylurea.

Target
CN(C)C(=0)NC1=CC=C(C=C1)ClI

o

Text + chemistry T5
CN(C)C(=0)NC1=CC=C(C=C1)ClI

Hoo
JOR S
Galactica
1-(4-Chlorophenyl)-3-methylurea

: HTH\
ChatGPT
CC(NC(=0O)N(C)C1=CC=Cc(chc=Cc1n)(C)C

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

Target
CN(C)C(=0)Cl.Nclccc(Clececl.cleenccl

0 NH,
A QD
Text + chemistry T5
CN(C)C(=0)ClL.NC1=CC=C(C=C1)Cl.clccncca

L "0
Galactica

(@) (b) (c) (d) (e) () (g) (h) (i) (j) (k) () (m) (n) (o) (p)
(g) () (s) () (U) (v) (W)

RXN confidence = 1.0

Invalid reaction

ChatGPT
CN(C)C + 4-chlorobenzoyl chloride + base

| S
AN k

RXN confidence = 0.6

Target

1. ADD 4-Chloroaniline (1.0 g)
2. ADD Pyridine 9. EXTRACT with EtOAc

3. SET TEMPERATURE 0°C 10. COLLECTLAYER organic

4. ADD dimethyl carbamyl chloride (0.683 g, 6.35 mmol) 11. DRYSOLUTION over MgS04

5. STIR for 2 h at room temperature 12. FILTER keep filtrate

6. STIR for overnight at 60°C under argon 13. CONCENTRATE

7. SETTEMPERATURE room temperature 14. YIELD 3-(4-Chlorophenyl)-1,1-dimethylurea

8. ADD ice water

Text + chemistry T5

1. ADD 4-Chloroaniline (1.0 g);

2. ADD pyridine;

3. SETTEMPERATURE 0°C;

4. ADD dimethyl carbamyl chloride;
5. STIR for overnight at 60°C;

6. SETTEMPERATURE 60°C,;

7. ADD water;

8. EXTRACT with EtOAc;

9. DRYSOLUTION over MGS0O4
10. FILTER keep filtrate;

11. CONCENTRATE;

12. YIELD product

Galactica

1. 3-(4-Chlorophenyl)-1,1-dimethylurea (1.0 g, 4.5 mmol) was dissolved in dry THF (10 mL) and
cooled to 0° C. before adding n-BuLi (1.6 M in hexane, 1.6 mL, 2.5 mmol).

2. The reaction mixture was stirred at 0° C. for 10 min and then at room temperature for 1 h.

3. The reaction mixture was quenched with water and extracted with EtOAc.

4. The organic extract was dried over MgS04, filtered and concentrated to a residue.

5. The residue was purified by flash chromatography (silica gel, 10% EtOAc in hexane) to afford
3-(4-Chlorophenyl)-1,1-dimethylurea (1.0 g, 4.5 mmol) as a white solid (90%)

ChatGPT
1.

Dissolving 4-chloro-aniline in pyridine and cooling the mixture to 0°C.
. Adding dimethyl carbamyl chloride to the mixture.
. Stirring the reaction mixture at room temperature for 2 hours.
. Heating the reaction mixture overnight at 60°C under argon.
. Cooling the solution to room temperature and pouring it into ice water.
. Extracting the mixture with ethyl acetate.
. Drying the organic extract over magnesium sulfate.
. Filtering the extract and concentrating it to a residue. 33
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Different molecular
representations for machine
learning

Node Indices

0 O Node Features S | |
& S | |
0 = =N
~ E/O : 2| |
o 2| Sl
5 ’ g Z T
E ‘f.f}"-'%
A. Kekulé Diagram C. Molecular Graph  Node Feature Matrix Adjacency Tensor
[ﬂﬂﬂl...ﬂﬂi}ﬂll] _
| |
|
v v L
- 0 CC(=0)0clccccelC(=0)0 Tokenzation |
h One-Hot Encoding
B. Fingerprints D. SMILES String | L

Deng, J., Yang, Z., Ojima, 1., Samaras, D. & Wang, F. Artificial intelligence in drug discovery: applications and
techniques. Briefings in Bioinformatics 23, bbab430 (2022)

Wigh, D. S., Goodman, J. M. & Lapkin, A. A. A review of molecular representation in the age of machine learning. WIREsS
Computational Molecular Science 12, 1603 (2022)
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Optimization
strategies

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

= Design of Experiment
= Bayesian Optimization
= Reinforcement Learning

35



Optimization in chemical
reaction planning

A. Multi-objective optimization in synthetic chemistry

N Me~
B e NC <y e~N“\,~CN ;
EtO I\ H N Reaction conditions N, —N o Me
+ M
O E nc” N N~ NO, NT NO, N ] N NO,
1 I NC
. Objectives: - - e Reaction conditions: - — — ~ O Et O Et Et
" Conversion " | Pdcatalyst Catalyst loading ‘ ..
| L ' C5 selectivity C2 selectivity difunctionalization hydrolysis
| Selectivity I , Ligand Base Additive Solvent : precursor to BMS-911543
L Reaction cost ; '\ Temperature  Time !
o e e e ~ T e e e e e e e ) -~
B. Previous work on Experimental Design through Bayesian Optimization (EDBO) o @ < —suggested experiment
3
actwator base . ground '[I‘u'[h Observed
Py ““““‘:“‘N ““““ i features yield ; data
O O | | s
I D: 2| — e ./-T - K/\\;‘
i — — B — 0 — 3R et
| ] H|—0 > | \
| .. — @ model mean
Command-Line HE Experi reaction parameter
perimental . S : P
Interface (CLI) Reaction conditions selection data collection Single-objective regression

A

Suggested experiments ¢—— [.] [.][ ”.]

Single-objective acquisition function

Torres, J. A. G. et al. A Multi-Objective Active Learning Platform and Web App for Reaction Optimization. J. Am. Chem. Soc. 144, 19999-20007 (2022)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation
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Comparison of approaches to
experiment planning

Design of experiment One-factor-at-a-time High-throughput experimentation
A. DoE B. OFAT C. HTE
BRSO \ S AN =

i) g;%%zé% N 2 S=—=AA N\
= —2 | |
8 - (( N\
AV
a

Parameter 1
98 32 Experiments 3¢ Global optimum

» Identity factors affecting response = Identity effect of single factor » Grid of possible values
» Relies heavily on initial design * Time consuming for many factors = Exhaustive exploration
= Number of experiments grows = Difficult to isolate confounding = Experimentally expensive

exponentially with number of factors and potential interactions a Sensitive to choice of parameters

parameters between factors

Gutierrez, D. P, Folkmann, L. M., Tribukait, H. & Roch, L. M. How to Accelerate R&D and Optimize
Experiment Planning with Machine Learning and Data Science. Chimie 77, 7-16 (2023)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

Machine learning driven

Parameter 2

1

—

——
Mg iy
L. --_,- 1 .-l’..-.

= Adaptive methods that learn from
experiments in real time

» Recommend experiments where
there is little information
(exploration) or where better
results are likely to occur
(exploitation)
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Key concepts in Bayesian optimization

Bayesian optimization is a global optimization algorithm that
reduces the need for many experiments.

Surrogate model:
= Probabilistic model to past observations
= Example function: Gaussian process

Acquisition model:

= Selection policy to decide which point to evaluate next

= Determines tradeoft between exploration and exploitation
= Example function: Expected improvement

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

value

O o o o
\ W IN o

value of sampling

o
—h

I

I

I

- Gaussian process posterior on the objective function

I

experimental
o observation
- ~ 7 estimate of TS i
P objective function ~
7 N ~
S
N N
__® m/
N /N
~
u - )
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X
| |

300

|
Acquisition Function

next sampling point
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X
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Frazier, P. I. A Tutorial on Bayesian Optimization. arXiv:1807.02811 (2018)
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Exploration and exploitation in 10 epochs

Example using IBM Bayesian Optimization
Accelerator

https://www.ibm.com/docs/en/boa/1.1.17?topic=boa-sdk-guide

Six-hump camelback function

4

f(x) = (4 —2.1z% + ﬂ) T3 + T2y + (—4 + 423)z;

3

initialization

SN

00 15 10 -05
-20 -1 -1. -0. -
Global minima: X1
fix) -
" _ X:l_ — 00898 g . -:- Z;:::sz:cttive value
5 ° Xy = -0.7126 2.0
4 y =-1.0316 )
3
2 _ and n ’
1 A «*,.‘-;*':.;-*.. Tave
0 NGALEROS IS x, =-0.0898
-1.00 | | ~ RN . . y=-1.0316 051 Best parameters found:
- “‘v--i---o---o---t--o---o--t—--o--ﬂ‘ Xl = 01020
\‘u X, =-0.6682
. \\.\ " y — _1.0153
. /
o
E L O S U U —— \ :::t-ﬂzf
Other interactive examples online:

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation httDS://d istill. puU b/2020/bavesian—opti mization/ o0 22 >0 7 10:0 12 120 1 39



https://www.ibm.com/docs/en/boa/1.1.1?topic=boa-sdk-guide
https://distill.pub/2020/bayesian-optimization/

Reinforcement learning (RL) to learn complex
behaviors through trial-and-error interactions

reward

R,
E< Rr+1 r
Sr+1| Environment I

Sutton & Barton, Reinforcement Learning: An
Introduction (2018)

action
A,

PacMan agent using deep reinforcement learning
https://youtu.be/QiIlHGSYb|DQ?si=wyPINDdrymngUb7|

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

» Reinforcement learning uses punishments and rewards as
signals for positive and negative behavior

= Find suitable action model to maximize the total
cumulative reward

= Exploration vs. exploitation trade-oft
= Two main approaches in deep reinforcement learning:

o Value functions (estimate expected return, e.g.
through neural networks)

o Policy search (directly find policies, e.g. through
gradient-free or gradient-based methods )

Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A.
Deep Reinforcement Learning: A Briet Survey. IEEE Signal Processing
Magazine 34, 26-38 (2017)

Azar, M. G. et al. A General Theoretical Paradigm to Understand
Learning from Human Preferences. arXiv:2310.12036 (2023)
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Reintorcement learning with human feedback

(RLHF) to align model with user intent

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

V4

Some people went
to the moon...

Ouyang, L. et al. Training language models to follow instructions with

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

A B

Explain gravity... Explain war...

o D

Moon is natural People went to

|
satellite of ... the moon...

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

human feedback. arXiv:2203.02155 (2022)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

™

Write a story
about frogs

Once upon a time...

= Common approach to RLHF is based on training
a reward model (classifier) and then fine-tuning
a policy to maximize the reward

= Recent approaches bypass reward models to
directly train policies through Direct Preterence
Optimization (DPO) or pairwise preferences

Rafailov, R. et al. Direct Preference Optimization: Your
Language Model is Secretly a Reward Model.
arxXiv:2305.18290 (2023)

Azar, M. G. et al. A General Theoretical Paradigm to

Understand Learning from Human Preferences.
arXiv:2310.12036 (2023)
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Closing the
loop

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

= Case studies
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Toward closed-loop
autonomous molecular
discovery: designing novel
antiviral candidates against
SARS-CoV-2

Conditional generative model

»% il 1
- =
= ﬁ#}:l:" + _Ix_ T,_r" |
State
Reward
' N 7 >
A Agent B Critic
:g?afﬂgﬁr |I Ill.'b ;ﬁatiffa- ~
e = 3
et O ‘
. i Reward
P c .--_.-: - "-«.!. I I
P Er’ '“-‘31 - < I L) Predictive
- "
Generated
Compound
" i ¥ %

Candidate Compound

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

Retrosynthesis prediction model

Cl 0

0 Cl

i T Leor = [ Tex]

4L 10D

L
| -
“a gl \[]‘ ";'.;\-.
N .r_':-"'-\.._]"’_,'. 1
M
L
L Liwand g

Predicted synthesis plan
D

1) ADD CI1P(Cl)(Cl)(Cl)Cl

2) ADD 0=C(0)clccc(C(=0)0)ccl
3) STIR at 60 °C for 70 minutes
4) QUENCH

5) EXTRACT with Et20

6) EVAPORATE

7) PURIFY

Candidate compound synthesis
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Translate from amino acid
sequence to potentially binding
ligands

Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)
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Visualizing the learned
chemical space

€ OC[C@H]INC[C@... 28/29 £ »

Legend

source
2 chembl

literature _candidate

iame B rl_generated
QOCIC@H]TNC[CaH)(O)[Ca@H](O)[C... X unbiased

Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation
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Find a viable synthetic route

= \Web service:
rxn.res.ibm.com

= Retrosynthesis route for
most promising compounds

= Reaction prediction and
retro-synthesis models
(Transformer)

= Synthesis routes found for
ca. 30% of the best
candidates

Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

paccmann SequenceO Confidence: 0.757 Optimization score: 1.3

Predictions: B 6/F 30

High confidence

)

“

Optimisation time: 83 s . Molecule commercially available on eMolecules.com . Not able to find a synthetic path

- Jf&ﬁ

CCSclc(C)nc2scc(C)n2cl=0

0.808 - Pyrimidone synthesis O

0
N ﬁo/
0]

CCSC(C(C)=0)C(=0)0C

Rbas

O

WC’\ H
O @)

Na"

Na™

C1CCOC1

CCs

Coc(=0)Cc(chc(C)=0

[H-1.[Na+]

[H-1.[Na+]

© IBM RXN

Cclcsc(N)nl

e, 100% ~ I

Sequences Generated

@ SequenceO

Sequence 1

Sequence 2

Sequence 3

Sequence 4

Sequence 5

Sequence 6

Sequence 7

Sequence 8

Sequence 9

Sequence 10

Sequence 11
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http://rxn.res.ibm.com/

Selection of synthesis
candidate

3-Bromobenzylamine

Br
3-Bromobenzylamine:
= Full substructure of Arbidol
» Generated by our model to target ACE2 receptor
= Presence of bromine is key for efficacy of Arbidol NH,
Arbidol: .
Arbidol

= Approved, broad-spectrum antiviral drug
» Positive evidence for COVID-19 treatment

= [nteracts with the ACE2 receptor

Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation
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Stepwise synthesis execution
plan

Smiles2Actions model

Chemical equation Tokenized reaction SMILES

CS(C)=0.ClclccecnclCl.0.0=C([O-])
[0-] ~[K+]~[K+].SCclccccecl>>Clclcccen
cl5Cclcecceccl

Type: Nitrile reduction, Confidence: 0.985
C1CCOC1.N#Ccicccc(Br)c1.[Al+3].[H-].[H-].[H-].[H-].[Li+]>>BrC1C=CC=C(CN)C=1

I::.-'Iﬂ. S '\. . ] '----"--.-.--'I
Deep-learning model
Br o

Br
Recipe formulation
> | ) + +APF+H +H +H +H +Li' v
0 .ADD $2% .ADD 2,3-dichloropyridine
.ADD $4% CADD K2C03
Q‘:\N . ADD $1% . ADD DMSO

. MAKESOLUTION with $1% and $5% . MAKESOLUTION with DMSO and benzyl mercaptan
. ADD SLN dropwise at #6# over @1@ . ADD SLN dropwise at 100 °C over 600 s

. STIR for @2@ at #6# . STIR for 3600 s at 100 ?C

.ADD $3% .ADD water

. EXTRACT with dichloromethane . EXTRACT with dichloromethane

. COLLECTLAYER organic 9. COLLECTLAYER organic

10. DRYSOLUTION over sodium sulfate 10. DRYSOLUTION over sodium sulfate

11. CONCENTRATE 11. CONCENTRATE

12. PURIFY 12. PURIFY

13. YIELD $-1% 13. YIELD 2-benzylthio-3-chloropyridine

o v
Output action sequence Processed action sequence

NH,

£ 00 -3 O U B W R P
0O =] B Wk

Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)
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Molecular synthesis using IBM
RoboRXN platform

Automated synthesis LC/MS chromatogram

Synthesizing new molecule : l = Li]

i view module 7 |+ TIC Scan 466d68e3e1b3472986059885f24e5e48.d
| h
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|
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Live from IBM RoboRXN

ethyl trifluoromethane

Counts vs. Acquisition Time (min)

Methyl trifluon e
Insoluble in w: This material is
methylating ag

: . | ‘ : Compound Summary

P _9 » - . | == : s N Cpd Name Formula Mass Mass (Tgt)  Diff (Tgt, ppm) Algorithm
0 : : B g - N - 1 C7HBBrN 184.9858 184.9840 9.55 FBF

2 C7HBEBrN 184.9837 184.9840 -1.64 FBF

3 C4HBO 72.0580 72.0575 6.74 FBF

4 C4HBO 72.0571 72.0575 -6.36 FBF

M\':wvir\‘g to Via.l 61
Compound Details

Cpd. 1: C7 H8 Br N

Name Formula RT RI Mass Diff (Tgt, ppm) CAS ID Source Score Algorithm
C7HBBrN 2.882 184.9858 9.55 FBF 80.36 FBF

Species m/z Score (Tgt) Score (Lib) Score (DB) Score (MFG) Score (RT)
(M+H)+ (ZM+Na)+ 185.9902 352.9582 90.36
00:06:00 W © G MassHunter Qualitative Analysis Page 1 of 4 Generated at 23:01 on 25/08/2020

Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)
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In the news last week...

nature

Explore content ¥  About the journal v  Publish with us v Subscribe

nature » news > article

NEWS | 29 November 2023

Google Al and robots join forces to
build new materials

Tool from Google DeepMind predicts nearly 400,000 stable substances, and an
autonomous system learns to make themin the lab.

Article

Scaling deep learning for materials discovery

https://doi.org/10.1038/s41586-023-06735-9
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Article

Novel functional materials enable fundamental breakthroughs across technological
applications from clean energy to information processing! ™*. From microchips to
batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by
expensive trial-and-error approaches. Concurrently, deep-learning models for

Anautonomous laboratory for the
accelerated synthesis of novel materials

https://doi.org/10.1038/s41586-023-06734-w  Nathan J. Szymanski“*®, Bernardus Rendy"?®, Yuxing Fei"*®, Rishi E. Kumar®*®, Tanjin He'?,

Received: 16 May 2023

Accepted: 10 October 2023

Published online: 29 November 2023

David Milsted?, Matthew J. McDermott'?, Max Gallant'?, Ekin Dogus Cubuk®, Amil Merchant?,
Haegyeom Kim?, Anubhav Jain®, Christopher J. Bartel?, Kristin Persson'?, Yan Zeng®>* &
Gerbrand Ceder"*™

Open access
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Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80—-85 (2023)
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86—91 (2023)
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To close the gap between the rates of computational screening and experimental
realization of novel materials'?, we introduce the A-Lab, an autonomous laboratory
for the solid-state synthesis of inorganic powders. This platform uses computations,
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a Structural pipeline

Generating a large of database e T
stable crystal structures by —{%—*%—* g — Stabntyh , g

Candidates Graph —> Energy models

deep learning \ ;
- *C) GNOIVIE —>| 2.2 million stable structures
: Compositional pipeline database . _ . Y

L)—E6 —> L Interatomic potentials
| Li,S,0, — ® —> Stability — .
Candidates Graph AIRSS

= Generate diverse candidate
structures leveraging

a
(1)

symmetry-aware partial 00000 Extomal databases ;.ig #é;c(
c—‘g | (@] o
substitutions and random & 300,000 ;;. ;d?:&*“
structure search F
T 200,000

= Graph neural networks s

(GNNs) used to model g 1o
. . Z
materials properties and ——— H L
filter candidate materials 2> Year
: Rb,HfSi,O, TmPdgP,
sraph networks for materials | )
eXplO ratiOﬂ (GNOM E) d s Materials Project data e . Y . ® Materials Project data
: : — GNOME e ® GNoME

- Energy of f|lter§d candlcjates , 8 g 200
IS computed using density : g °
functional theory (DFT) and E ™ g

. = E o
used to improve GNoME 5 £ 5o .
. o ®
models through active 3 ° .
learnin g 10% 30% 50% 70% 50% © T 5 104 105 10 107
Precision of stable prediction Training set size

Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80—-85 (2023)
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86—91 (2023)
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Pertorming automated
experimental validation of new
crystal structures

Computations Text mining Robotic synthesis By A ~—= f—”tr
- = # N [ -3 0% | = ‘,_.x;\\

Materials Project DeepMind o fooml T N B | B {\\

= Synthesis recipes based on ‘ I Q@B

similar materials are

gsenerated by a language Rirsiatle <
model trained on solid-state iij

synthesis conditions from _ O )L y

journal data 0 ’

Targets I:II:II:IEIEII:II:IEIEIEIEIJ:L

(A
Tra

= Continuous experimentation Precursors + temperature WE MMM | Powder dosing
-

with active learning to learn — HHE

reaction pathways based on Predict reaction path Suggest
fixed set of precursors ] I [ Sicture

= Phase and weight fractions Precursors W - catabases
extracted from X-ray W— !. = 0
diffraction (XRD) patterns O\(O %Omo °C Predict phases bl
using a convolutional neural Products () () O /
network (CNN), automated Taroe I B B Confirm by
Rietveld refinement, and o QO XXOXOXX@~—F— -~ S )
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Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80—-85 (2023)
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86—91 (2023)
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L essons learned from failures
to synthesize target product

Experimental barriers
17 out of 58 targets were not

obtained at the end of the A )
_ _ morphous product
active learning cycle:

————————

"">-.__ Amorphous

. : Target
1. 11 faﬂure; dug to sluggish G | bolymorph
reaction kinetics

2. Decomposition and |
evaporation of ammonium n - _
phosphate precursors

3. Crystallization may be Incorrect hull
Inhibited upon melting of
samples at high
temperatures

4. Underestimation of energy
by DFT calculation

Composition

Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80—-85 (2023)

Y,Ga,In,0,,
Ca,Sn,04
Ca,Ti,Oq
CaTiNiP,O,
Ca,Ti;Cr,0,,
V,AgO,
Mg,NiO,
KMg,;V,CuO,,
Na,V,Cr,0,,
CuAg,P,0,
Ba,InSbO,
Mo(PO,).
CaCr,P,0O4
La.Mn. O,
YbMoO,
BaGdCrFeO,

Slow Kinetics

Precursors

Stable intermediates
Low /
driving =
force ~ T

Reaction coordinate

Volatile precursor

N

D AB\/
AB. | |«

Composition 9

Computational barriers

Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86—91 (2023)
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Hands-on lab

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation

= Design and synthesize your own molecule
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Design and synthesize your
own molecule

1. Generate novel molecules and pick your tavorite one!
https://huggingtace.co/spaces/GT4SD/regression _transtormer

2. Predict its molecular properties:
nttps://huggingrace.co/spaces/GT4SD/regression _transtormer

Qo
]

iInd synthesis routes with IBM RXN:
Nttps://rxn.res.ibm.com

4. Press a button to synthesize your own compound ©

Al for Scientific Discovery | IBM Research | © 2023 IBM Corporation 55


https://huggingface.co/spaces/GT4SD/regression_transformer
https://huggingface.co/spaces/GT4SD/regression_transformer
https://rxn.res.ibm.com/

Summary
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Scientific discovery as a loop
Evolution of the scientific method
Al for science
State of the art

Molecular generation
Language models for molecular discovery
Generative Al
Graph neural networks

Optimization strategies
Design of Experiment
Bayesian Optimization
Reinforcement Learning

Closing the loop: case studies

Hands-on lab
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