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Scientific 
discovery as 
a loop

 Evolution of the scientific method
 AI for science
 State of the art
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A new era of accelerated 
discovery
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 Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high 
performance computing and robotics. npj Comput Mater 8, 84 (2022)

Empirical
Science

Theoretical
Science

Computational
Science

Big data-driven
Science

~1600s ~1950 ~2000

1st Paradigm 2nd Paradigm 3rd Paradigm 4th  Paradigm 

Observations
Experimentation

Scientific laws 
Physics
Biology
Chemistry

Simulations 
Molecular dynamics 
Mechanistic models

Big data
Machine learning
Patterns
Anomalies
Visualization

Pre-Renaissance ~2020

5th  Paradigm 

Scientific knowledge at scale
AI generated hypotheses
Autonomous testing

Accelerated
discovery



AI surrogate models are integrated with 
simulation and experimentation to speed 
up complex workloads

The scientific method is 
humanity’s best model for 
discovery 
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 Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high 
performance computing and robotics. npj Comput Mater 8, 84 (2022)

TestQuestion

HypothesizeStudy

AssessReport

Extraction, integration and reasoning 
with knowledge at scale

Generative models automatically 
propose new hypotheses and explore a 
wider discovery space

Machine representation of knowledge 
leads to new questions

Tools help identify new questions based 
on needs and gaps in knowledge

Robotic labs automate experimentation 
and bridge digital models and physical 
testing

AI

Cloud Quantum



Scientific discovery is 
accelerated by AI tools
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TestQuestion

HypothesizeStudy

AssessReport

AI

Cloud Quantum

Knowledge Integration
https://ds4sd.github.io

Simulation Toolkit for 
Scientific Discovery
https://st4sd.github.io/overview/

Generative Toolkit for 
Scientific Discovery

https://github.com/GT4SD/gt4sd-core

IBM RXN for Chemistry
https://rxn.res.ibm.com

 Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelligence, high 
performance computing and robotics. npj Comput Mater 8, 84 (2022)

https://ds4sd.github.io/


The field of AI for scientific 
discovery

AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation 8 Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023)

 AI-aided data collection and curation for scientific research
 Learning meaningful representations of scientific data
 AI-based generation of scientific hypotheses
 AI-driven experimentation and simulation



State of the art

AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation 9

 King, R. D. et al. The Automation of Science.
Science 324, 85–89 (2009)

 Burger, B. et al. A mobile robotic chemist. Nature 583, 237–
241 (2020)

https://youtu.be/SX26XRFx0U0

https://youtu.be/SX26XRFx0U0


Making AI for chemistry 
available to everyone
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https://rxn.res.ibm.com/

https://rxn.res.ibm.com/




Molecular 
generation

 Language models for molecular discovery
 Generative AI
 Graph neural networks
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The world of large language 
models (LLMs)

AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation 13

Credit: https://blog.sylphai.com/introduction-
to-large-language-models



The same AI breakthroughs for 
language are changing 
scientific discovery
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AI

Data AI Models

Question Answering Improved
Language
Tasks

Transformers

Sentences

Words

Letters

Language

Natural Language Processing (NLP)

AI

Data AI Models

Improved
Chemistry 
Tasks

Transformers

Properties/Reactions

Molecules

Atoms

Chemistry

Accelerated Chemistry

Generative modeling and transformers are achieving new breakthroughs in scientific disciplines



Translate from German to 
English
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Language model

Wie geht es dir heute ? 

How are you doing today ? 



Representing words as input to 
a neural network
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One-hot encoding?

Learned encodings!

Word2Vec:  Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed 
Representations of Words and Phrases and their Compositionality. arXiv:1310.4546 (2013)



Words as vectors

Similar words cluster Word arithmetics
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Until 2017, language models were based on 
recurrent neural networks (RNNs)
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Recurrent neural network

Wie geht es dir heute ? 

How are you doing today ? 



The transformer model
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 Vaswani, A. et al. Attention is All you Need. NeurIPS (2017)

Encoder

Decoder

Key concept: parallel multi-head attention mechanism
 Tokenizers convert input (such as text) to tokens
 Embedding layer converts tokens and their positions to vector representations
 Transformer layers consisting of alternating attention and feedforward layers 

extract linguistic information

Superior translation quality and less training effort compared to previous state-of-
the-art with recurrent neural networks (RNNs).

Encoder-only models:
Best suited for classification tasks
(e.g. sentence and word classification, entity recognition, extractive Q&A)

Decoder-only models (also called auto-regressive models)
Best suited for generative tasks
(e.g. text generation)

Encoder-decoder models (also called sequence-to-sequence models)
Best suited for generative tasks depending on a given input
(e.g. summarization, translation, generative Q&A)



Since 2017, transformers networks are the 
state-of-the-art for language models
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Language model

Wie geht es dir heute ? 

How are you doing today ? 



Masked language modelling: training 
transformers with self-supervision
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Language model

How [MASK] you [MASK] today ? 

How are you doing today ? 



Transformers impacted multiple application 
domains
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Chemical language models
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Learning the language of chemistry
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C C 1 ( C C C C ( N 1 O C ( O C 1 
= C C = C ( [N+] ( = O ) [O-] ) C 

= C 1 ) = O ) ( C ) C ) C

C C 1 ( C C C C ( N 1 O ) ( C ) C ) C . O ( C ( = O ) Cl ) 
C 1 = C C = C ( [N+] ( = O ) [O-] ) C = C 1

retrosynthesis

Products Reactants + Reagents

English Spanish
Translation

synthesis

“Sentence of atoms”

Textual representation (SMILES)

CC1(CCCC(N1OC(OC1=CC=C([N+](=O)[O-])C=C1)=O)(C)C)C CC1(CCCC(N1O)(C)C)C O(C(=O)Cl)C1=CC=C([N+](=O)[O-])C=C1



Automating lab synthesis and experimentation 
with help of language models
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1. AI-based chemical reaction prediction
synthesis

retrosynthesis
+

N  C  c  1  c  c  c  c  (  Cl  )  c  1  .  O  =  C  (  Cl  )  c  1  c  c  c  (  C  Br  )  c  c  1 O  =  C  (  N  C  c  1  c  c  c  c  (  Cl  )  c  1  )  c  1  c  c  c  (  C  Br  )  c  c  1
“translation”

transformer
 Schwaller et al., Chem. Sci. 9 (2018) 6091
 Schwaller et al., ACS Cent. Sci. 5 (2019) 1572
 Schwaller et al., Chem. Sci. 11 (2020) 3316

2. Chemical procedures from text (Paragraph2Actions)

translationThe TFA was removed in vacuo and a 

saturated solution of NaHCO3 was added.
Concentrate(),
Add(name=‘saturated solution of NaHCO3’)

 Vaucher et al., Nat. Comm. 11 (2020) 3601

3. Chemical procedures from reactions (Smiles2Actions)

C(=NC1CCCCC1)=NC1CCCCC1.ClCCl.CC1(C)CC(=O)Nc2cc(C(=O)O)ccc21.Nc1ccccc1>>CC1(C)CC(=O)Nc2cc(C(=O)Nc3ccccc3)ccc21

1. ADD $1$
2. ADD $4$
3. ADD $2$
4. ADD $3$
5. STIR for @3@ at #4#
6. FILTER keep precipitate
7. RECRYSTALLIZE from ethanol
8. YIELD $-1$

30k+
global users 

via cloud

10+ million
reaction

predictions

Automated synthesis via cloud + robotic lab
https://rxn.res.ibm.com/rxn/robo-rxn 

 Vaucher et al., Nat. Comm. 12 (2022) 2573



The size of chemical space
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Chemical Space | Naomi Johnson, Lee Cronin

Number of compounds Reference

6,2 × 1013 Henze and Blair [4]

1,3 × 1015 Blair and Henze [5]

1021 Weaver and Weaver [8]

1023 Ertl [7]

1026 Ogata et al. [24]

1033 Weininger [23]

1033 This work (see ref. below)

1060 Bohacek et al. [6]

10100 Walters et al. [26]

10180 Weininger [27]

 Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-
like chemical space based on GDB-17 data. J Comput Aided Mol Des 27, 675–679 
(2013)

https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR4
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR5
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR8
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR7
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR24
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR23
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR6
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR26
https://link.springer.com/article/10.1007/s10822-013-9672-4#ref-CR27


Generative AI for discovery
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How can generative models fuel scientific discovery?
https://youtu.be/xsx14v1CRu8?si=jWg2BIu-mADyr3rM
John Smith, IBM Fellow (2022)

https://youtu.be/xsx14v1CRu8?si=jWg2BIu-mADyr3rM


Principle of generative models
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Credit: https://openai.com/research/generative-models

Example approaches to generative models:

 Variational autoencoders (VAEs)

 Generative adversarial networks (GANs)

 Generative flow networks (GFNs)

 Diffusion models (DMs)



Examples of generative models
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Variational autoencoders

 Consist of an encoder and a decoder
 Learn the best encoding-decoding scheme through iterative optimization
 Loss function with two terms: reconstruction loss and regularization term
 Kingma, D. P. & Welling, M. Auto-Encoding Variational Bayes. arXiv:1312.6114v11 (2022)

Credit: Bilodeau et al. (2022)

Generative adversarial networks

 Consist of a generator and a discriminator
 Adversarial training of generator to trick discriminator
 Tends to produce high fidelity, risk of collapsing to low diversity
 Goodfellow, I. et al. Generative Adversarial Nets. NeurIPS (2014)

Generative flow networks Diffusion models

 Allow neural nets to model distributions over data structures like graphs
 Generates a series of actions at a frequency proportional to their reward
 Improves samples diversity and provides non-iterative sampling mechanism
 Bengio, E., Jain, M., Korablyov, M., Precup, D. & Bengio, Y. Flow Network based Generative Models for 
Non-Iterative Diverse Candidate Generation. NeurIPS (2021)

 Learn high-dimensional distributions by denoising data at multiple scales
 Fixed forward diffusion process and learnable reverse diffusion process
 High fidelity and diversity samples, but slow sample generation
 Bengio, E., Jain, M., Korablyov, M., Precup, D. & Bengio, Y. Flow Network based Generative Models for 
Non-Iterative Diverse Candidate Generation. NeurIPS (2021)

Credit: Bilodeau et al. (2022)

Credit: 
https://yoshuabengio.org/2022/03/05/
generative-flow-networks/

Credit: Ho et al. (2022)



Generative models in molecular discovery

Design-Make-Test-Analyze cycle in chemistry Accelerated molecular discovery
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Generative Toolkit for Scientific Discovery 
(GT4SD): an open-source library to accelerate 
hypothesis generation in scientific discovery
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GT4SD makes generative AI algorithms and 
models easier to use in scientific discovery
https://github.com/GT4SD/gt4sd-core Applications include hypothesis generation for 

inverse design and discovery of materials and 
therapeutics like antivirals and antimicrobials

TestHypothesizeStudy

Example molecules generated using GT4SD1. Train generative models

2. Create inference pipelines

3. Run inference pipelines

 Manica et al., npj Comput. Mater. 9,  69 (2023) 

https://github.com/GT4SD/gt4sd-core


Multi-modal foundation models will accelerate 
fundamental research tasks
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 Christofidellis et al., ICML (2023)

An example from chemistry…



Retrosynthesis ActionsDe novo designEnd-to-end discovery workflow 
using multi-task text and 
chemistry  T5 model

Input
Write in SMILES the described molecule: Give me a 
member of the class of phenylureas that is urea in 
which one of the nitrogens is substituted by a p-
chlorophenyl group while the other is substituted by 
two methyl groups. It has a role as a herbicide, a 
xenobiotic and an environmental contaminant. It 
should be a member of monochlorobenzenes and a 
member of phenylureas.

Input
Predict the reaction that produces the following 
product: 

CN(C)C(=O)NC1=CC=C(C=C1)Cl

Input
Which actions are described in the following 
paragraph:
4-Chloro-aniline (1.0 g) was dissolved in pyridine and cooled to 
0°C before adding dimethyl carbamyl chloride (0.683 g, 6.35 
mmol). The reaction mixture was stirred at room temperature for
2 h and then heated overnight at 60°C under argon. The solution 
was cooled to room temperature, poured into ice water and 
extracted with EtOAc. The organic extract was dried over MgSO4, 
filtered and concentrated to a residue to afford 3-(4-
Chlorophenyl)-1,1-dimethylurea.

33

Target
CN(C)C(=O)NC1=CC=C(C=C1)Cl

Text + chemistry T5
CN(C)C(=O)NC1=CC=C(C=C1)Cl

Galactica
1-(4-Chlorophenyl)-3-methylurea

ChatGPT
CC(NC(=O)N(C)C1=CC=C(Cl)C=C1)(C)C

Target
CN(C)C(=O)Cl.Nc1ccc(Cl)cc1.c1ccncc1

Text + chemistry T5
CN(C)C(=O)Cl.NC1=CC=C(C=C1)Cl.c1ccncc1

Galactica
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) 
(q) (r) (s) (t) (u) (v) (w)

ChatGPT
CN(C)C + 4-chlorobenzoyl chloride + base

RXN confidence = 1.0

Invalid reaction

RXN confidence = 0.6

Target
1. ADD 4-Chloroaniline (1.0 g) 8. ADD ice water
2. ADD Pyridine 9. EXTRACT with EtOAc
3. SET TEMPERATURE 0°C 10. COLLECTLAYER organic
4. ADD dimethyl carbamyl chloride (0.683 g, 6.35 mmol) 11. DRYSOLUTION over MgSO4
5. STIR for 2 h at room temperature 12. FILTER keep filtrate
6. STIR for overnight at 60°C under argon 13. CONCENTRATE
7. SETTEMPERATURE room temperature 14. YIELD 3-(4-Chlorophenyl)-1,1-dimethylurea

Text + chemistry T5
1. ADD 4-Chloroaniline (1.0 g); 7. ADD water;
2. ADD pyridine; 8. EXTRACT with EtOAc;
3. SETTEMPERATURE 0°C; 9. DRYSOLUTION over MGSO4
4. ADD dimethyl carbamyl chloride; 10. FILTER keep filtrate;
5. STIR for overnight at 60°C; 11. CONCENTRATE;
6. SETTEMPERATURE 60°C; 12. YIELD product

Galactica
1. 3-(4-Chlorophenyl)-1,1-dimethylurea (1.0 g, 4.5 mmol) was dissolved in dry THF (10 mL) and 

cooled to 0° C. before adding n-BuLi (1.6 M in hexane, 1.6 mL, 2.5 mmol). 
2. The reaction mixture was stirred at 0° C. for 10 min and then at room temperature for 1 h. 
3. The reaction mixture was quenched with water and extracted with EtOAc. 
4. The organic extract was dried over MgSO4, filtered and concentrated to a residue.
5. The residue was purified by flash chromatography (silica gel, 10% EtOAc in hexane) to afford 

3-(4-Chlorophenyl)-1,1-dimethylurea (1.0 g, 4.5 mmol) as a white solid (90%)

ChatGPT
1. Dissolving 4-chloro-aniline in pyridine and cooling the mixture to 0°C.
2. Adding dimethyl carbamyl chloride to the mixture.
3. Stirring the reaction mixture at room temperature for 2 hours.
4. Heating the reaction mixture overnight at 60°C under argon.
5. Cooling the solution to room temperature and pouring it into ice water.
6. Extracting the mixture with ethyl acetate.
7. Drying the organic extract over magnesium sulfate.
8. Filtering the extract and concentrating it to a residue.AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation



Different molecular 
representations for machine 
learning

34AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation

 Deng, J., Yang, Z., Ojima, I., Samaras, D. & Wang, F. Artificial intelligence in drug discovery: applications and 
techniques. Briefings in Bioinformatics 23, bbab430 (2022)

 Wigh, D. S., Goodman, J. M. & Lapkin, A. A. A review of molecular representation in the age of machine learning. WIREs 
Computational Molecular Science 12, e1603 (2022)



Optimization 
strategies

 Design of Experiment
 Bayesian Optimization
 Reinforcement Learning
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Optimization in chemical 
reaction planning
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 Torres, J. A. G. et al. A Multi-Objective Active Learning Platform and Web App for Reaction Optimization. J. Am. Chem. Soc. 144, 19999–20007 (2022)



Comparison of approaches to 
experiment planning
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Design of experiment One-factor-at-a-time High-throughput experimentation Machine learning driven

 Identify factors affecting response
 Relies heavily on initial design
 Number of experiments grows 

exponentially with number of 
parameters

 Identify effect of single factor
 Time consuming for many factors
 Difficult to isolate confounding 

factors and potential interactions 
between factors

 Grid of possible values
 Exhaustive exploration
 Experimentally expensive
 Sensitive to choice of parameters

 Adaptive methods that learn from 
experiments in real time
 Recommend experiments where 

there is little information 
(exploration) or where better 
results are likely to occur 
(exploitation)

 Gutierrez, D. P., Folkmann, L. M., Tribukait, H. & Roch, L. M. How to Accelerate R&D and Optimize 
Experiment Planning with Machine Learning and Data Science. Chimie 77, 7–16 (2023)



Key concepts in Bayesian optimization

Bayesian optimization is a global optimization algorithm that 
reduces the need for many experiments.

Surrogate model:
 Probabilistic model to past observations
 Example function: Gaussian process

Acquisition model:
 Selection policy to decide which point to evaluate next
 Determines tradeoff between exploration and exploitation
 Example function: Expected improvement

AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation 38
 Frazier, P. I. A Tutorial on Bayesian Optimization. arXiv:1807.02811 (2018)

experimental 
observation

estimate of 
objective function

Bayesian credible 
interval

next sampling point



Example using IBM Bayesian Optimization 
Accelerator
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https://www.ibm.com/docs/en/boa/1.1.1?topic=boa-sdk-guide

Other interactive examples online:
https://distill.pub/2020/bayesian-optimization/

Six-hump camelback function

Global minima:
 
 x1 = 0.0898
 x2 = -0.7126
 y = -1.0316

 and

 x1 = -0.0898
 x2 = 0.7126
 y = -1.0316

Exploration and exploitation in 10 epochs

initialization

optimization

Best parameters found:
 
 x1 = 0.1020
 x2 = -0.6682
 y = -1.0153

𝑓𝑓 𝒙𝒙

𝑥𝑥1𝑥𝑥2

𝑥𝑥1

𝑥𝑥2

Epoch

𝑓𝑓 𝒙𝒙

https://www.ibm.com/docs/en/boa/1.1.1?topic=boa-sdk-guide
https://distill.pub/2020/bayesian-optimization/


Reinforcement learning (RL) to learn complex 
behaviors through trial-and-error interactions

 Reinforcement learning uses punishments and rewards as 
signals for positive and negative behavior

 Find suitable action model to maximize the total 
cumulative reward

 Exploration vs. exploitation trade-off
 Two main approaches in deep reinforcement learning:

o Value functions (estimate expected return, e.g. 
through neural networks)

o Policy search (directly find policies, e.g. through 
gradient-free or gradient-based methods )

 Arulkumaran, K., Deisenroth, M. P., Brundage, M. & Bharath, A. A. 
Deep Reinforcement Learning: A Brief Survey. IEEE Signal Processing 
Magazine 34, 26–38 (2017)
  Azar, M. G. et al. A General Theoretical Paradigm to Understand 
Learning from Human Preferences. arXiv:2310.12036 (2023)
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 Sutton & Barton, Reinforcement Learning: An 
Introduction (2018)

PacMan agent using deep reinforcement learning
https://youtu.be/QilHGSYbjDQ?si=wyP1NDdrymngUb7j



Reinforcement learning with human feedback 
(RLHF) to align model with user intent 
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 Ouyang, L. et al. Training language models to follow instructions with 
human feedback. arXiv:2203.02155 (2022)

 Common approach to RLHF is based on training 
a reward model (classifier) and then fine-tuning 
a policy to maximize the reward

 Recent approaches bypass reward models to 
directly train policies through Direct Preference 
Optimization (DPO) or pairwise preferences

 Rafailov, R. et al. Direct Preference Optimization: Your 
Language Model is Secretly a Reward Model. 
arXiv:2305.18290 (2023)

 Azar, M. G. et al. A General Theoretical Paradigm to 
Understand Learning from Human Preferences. 
arXiv:2310.12036  (2023)



Closing the 
loop

 Case studies
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Toward closed-loop 
autonomous molecular 
discovery: designing novel 
antiviral candidates against 
SARS-CoV-2
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Translate from amino acid 
sequence to potentially binding 
ligands

Language model

… G D E L … 

… C ( N [O-] …

 Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)
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Visualizing the learned 
chemical space

 Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)



Find a viable synthetic route

 Web service: 
rxn.res.ibm.com  

 Retrosynthesis route for 
most promising compounds

 Reaction prediction and 
retro-synthesis models 
(Transformer)

 Synthesis routes found for 
ca. 30% of the best 
candidates
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 Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)

http://rxn.res.ibm.com/


Selection of synthesis 
candidate

3-Bromobenzylamine: 

 Full substructure of Arbidol

 Generated by our model to target ACE2 receptor

 Presence of bromine is key for efficacy of Arbidol

Arbidol: 

 Approved, broad-spectrum antiviral drug 

 Positive evidence for COVID-19 treatment 

 Interacts with the ACE2 receptor
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3-Bromobenzylamine

Arbidol

 Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)



Stepwise synthesis execution 
plan
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 Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)



Molecular synthesis using IBM 
RoboRXN platform
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LC/MS chromatogram

 Born, J. et al. Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2. Mach. Learn.: Sci. Technol. 2, 025024 (2021)

Automated synthesis
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 Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023)
 Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023)

In the news last week…



Generating a large of database 
stable crystal structures by 
deep learning

 Generate diverse candidate 
structures leveraging 
symmetry-aware partial 
substitutions and random 
structure search

 Graph neural networks 
(GNNs) used to model 
materials properties and 
filter candidate materials  
graph networks for materials 
exploration (GNoME)

 Energy of filtered candidates 
is computed using density 
functional theory (DFT) and 
used to improve GNoME 
models through active 
learning
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 Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023)
 Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023)



Performing automated 
experimental validation of new 
crystal structures

 Synthesis recipes based on 
similar materials are 
generated by a language 
model trained on solid-state 
synthesis conditions from 
journal data

 Continuous experimentation 
with active learning to learn 
reaction pathways based on 
fixed set of precursors

 Phase and weight fractions 
extracted from X-ray 
diffraction (XRD) patterns 
using a convolutional neural 
network (CNN), automated 
Rietveld refinement, and 
manual analysis
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 Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023)
 Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023)



Lessons learned from failures 
to synthesize target product

17 out of 58 targets were not 
obtained at the end of the 
active learning cycle:

1. 11 failures due to sluggish 
reaction kinetics

2. Decomposition and 
evaporation of ammonium 
phosphate precursors

3. Crystallization may be 
inhibited upon melting of 
samples at high 
temperatures

4. Underestimation of energy 
by DFT calculation
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 Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023)
 Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023)



Hands-on lab  Design and synthesize your own molecule
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Design and synthesize your 
own molecule

55AI for Scientific Discovery | IBM Research | © 2023 IBM Corporation

1. Generate novel molecules and pick your favorite one!
https://huggingface.co/spaces/GT4SD/regression_transformer

2. Predict its molecular properties: 
https://huggingface.co/spaces/GT4SD/regression_transformer

3. Find synthesis routes with IBM RXN:
https://rxn.res.ibm.com

4. Press a button to synthesize your own compound  

https://huggingface.co/spaces/GT4SD/regression_transformer
https://huggingface.co/spaces/GT4SD/regression_transformer
https://rxn.res.ibm.com/


Summary 1. Scientific discovery as a loop
 Evolution of the scientific method
 AI for science
 State of the art

2. Molecular generation
 Language models for molecular discovery
 Generative AI
 Graph neural networks

3. Optimization strategies
 Design of Experiment

  Bayesian Optimization
  Reinforcement Learning

4. Closing the loop: case studies

5. Hands-on lab
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